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We characterize the class of (non-linear) operators that are equivari-
ant to the action of diffeomorphisms, in two cases:
1. the input is a function which values are scalars
2. the input is a function which values are vectors.
The set of Diffeomorphisms is the biggest possible set of transfor-
mations, it appears as the invariance group of shapes.

Abstract

What is equivariance?
When a transformation ϕ acts on the domain of a signal f , it induces
a transformation on the signal: Lϕf = f ◦ ϕ. A Network M is
equivariant when it respects the transformations,

M [Lϕf ] = Lϕ[Mf ]
Why look for equivariant networks?
Inductive bias, reduction of network complexity, increased accuracy
for tasks related to the transformations (e.g. invariance).

Example: CNNs are equivariant to translations.

Equivariance: What and Why?

Why the group of diffeomorphisms Diff(M)?
•Naturally appears as the symmetry group of shapes (seen as scalar

valued functions)
Numerically:
•Shapes replaced by ⇝ Meshed Shapes (finite dimensional).
• Transformations (symmetries) on shapes ⇝ transformations on Meshes.

Example: Beating heart with triangular mesh.

When scale of mesh λ → 0, ‘no limitation on refinement of
Meshes’, then recover shapes and diffeomorphisms:

Mesh →
λ→0

Shape Symmetries of Meshes →
λ→0

diffeomorphisms

Diffeomorphisms: transformations of shapes

Question: Can we leverage the knowledge of the symmetry group
(diffeomorphisms) of shapes by designing diffeomorphism equiv-
ariant networks? Can we characterize diffeomorphism-
equivariant networks for scalar valued functions?

Answer: Yes (Theorem 1) but Very few diffeomorphism- equiv-
ariant operators for a signal f : M → R that takes scalar values on
its domain M. Those operators are point-wise non-linearities.

Let M be a connected and orientable manifold of dimension
d ≥ 1. We consider a Lipschitz continuous operator M :
Lp

ω(M,R) → Lp
ω(M,R), where 1 ≤ p < ∞. Then,

∀ ϕ ∈ Diff(M) : MLϕ = LϕM

is equivalent to the existence of a Lipschitz continuous function
ρ : R → R that fulfills

∀f ∈ Lp
ω(M,R) M [f ](m) = ρ(f (m)) a.e.

Theorem 1: Equivariant operators for scalar functions

Equivariant operators for shapes

•Add directional information on each point of the shape or at the
center of faces of the mesh.

• A shape is a subset of an am-
bient space M.

• The vectors that are perpendic-
ular to the surface of the shape
are in the tangent space,
TM, of the ambient space M.

• A directional shape is (in
particular) a function
f :M→TM that send points
of M to vectors in TM.

Directional shapes

Question: Can we characterize diffeomorphism-equivariant
networks for vector valued functions? f : M → TM associates to
any point of M a vector in the tangent space of M.

Answer: Yes (Theorem 2) but Even fewer diffeomorphism-
equivariant operators for a signal f : M → TM that takes vector
values over its domain M. Those operators are multiplications by
a scalar.

Let M be a connected and orientable manifold of dimension
d ≥ 1. We consider a (Lipschitz) continuous operator M :
Lp

ω(M, TM) → Lp
ω(M, TM), where 1 ≤ p < ∞. Then,

∀ ϕ ∈ Diff(M) : MLϕ = LϕM

is equivalent to the existence of a scalar λ ∈ R such that

∀f ∈ Lp
ω(M, TM) : M [f ](m) = λf (m) a.e.

Theorem 2: Equivariant operators for vector fields

Equivariant operators for directional shapes
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